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• Society continues to find useful applications 
Computing’s Demand is Growing Exponentially

PowerBook  
100

Intel Pentium 
Microprocessor

Earth Simulator  
Supercomputer

AWS is Launched

Iphone, Macbook

RankBrain 
is Announced

Source: “Unimaginable Output: Global Production of Transistors” - Darrin Qualman 

Rise of AI
Rise of Smartphones

Client/Server Computing
Web-based Apps

Pervasive 
Computing Era

Smart Transportation
Smart Cities
Precision Agriculture
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Society’s  
Energy Demand

Implications of Increasing Computing Demand 
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How is Computing Demand Served?
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Data Center

Edge Data Center

Mobile Device

note: figures are not drawn to scale.

11.5x the size of a football field. 

Thousands of servers and data storage, 
e.g., Google Dalles data center houses 

~100k servers and consumes 100MW of 
power (enough for a small city)


10s-100s of servers and data storage,  
1,000 sqft to 50,000 sqft  
a few kW to a few MW

Edge Site

Mobile devices and 
small storage 
hand-held etc. 
a few watts



What Contributes to Data Center’s Cost, Energy, Carbon Footprint?
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server

server

server

server

server

server

server

server

server

server

server

Cost

Energy

• Servers: Cost a lot and are replaced every 3-5 years. 
• Building: Capital investment, depends on location.  
• Energy: Major cost of datacenter, depends on location.

• Computing: Become more energy efficient over time.  
• Cooling: Wasted energy, significantly reduced over years.

cooling

compute

Carbon
• Embodied: Carbon emissions from manufacturing/building.  
• Operational: Emissions from energy use for compute and cooling.



How to Serve Computing’s Demand in a Sustainable Manner? 
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Sustainable —> least carbon intensive way. 

server

server

server

server

server

server

server

server

server

server

server

cooling

compute

Carbon
• Embodied: Carbon emissions from manufacturing/building.  
• Operational: Emissions from energy use for compute and cooling.


• From the energy used to run the servers.

• From the energy used to cool the servers.  

Reduce Embodied Emissions and Reduce 
Operational Emissions 



Carbon Footprint = 
Cycles per Unit Work x Total Units of Work

Computing’s Energy Efficiency x Energy’s Carbon Efficiency
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Carbon Footprint = 
10 cycles per inference request x 100 inference requests

5 cycles per kWh x 1 kWh per gCO2eq

Carbon Footprint = 200 gCO2eq



History: Driving Factors Behind Innovations in Data Centers 
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• Assume 100,000 servers


• Monthly cost of 1 server 
• 500W server

• Cost = (Watts X Hours / 1000) * cost per kWh

• Always-on server monthly cost = $50


• Monthly cost of 100k servers = $5M 

• What about the cost of cooling?

• Use Power Usage Effectiveness (PUE)

• PUE = 2 —> double the cost

• PUE =1.2 —> 10% extra on $5M ($6M)
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Source: Global data centre energy demand by data centre type, 2015-2021 - IEA


PUE: ~1.57 PUE: ~1.1

Shift from Traditional Data Centers to CloudCost of Energy Has Been Driving Innovation



100

250

400

550

700

850

1000

2005 2010 2015 2020

• Most optimistic estimates suggest 6% increase from 2010-2018


Energy Efficiency Gains Moving Forward
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pessimistic

Efficiency Gains are Not Enough: Data Center Energy Consumption  
Continues to Rise Significantly - Ralph Hintemann (2018)

Recalibrating Global Data Center Energy-use Estimates - Eric Masanet (2020)
EPA Report to Congress on Server and Data Center Energy Efficiency (2007)

predictions

estimates
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Demand Accelerating 
vs  

Energy-efficiency Gains  
Slowing Down



Carbon Footprint = 
Cycles per Unit Work x Total Units of Work

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

[bounded]

Algorithmic Efficiency can be 
further improved, but has limits

Industry has strong incentive to 
improve  the algorithmic efficiency

Recent focus on ML training 
and Crypto-mining

[bounded]

[Koomey’s Law: Energy efficiency 
doubles every 1.5-2.6 years] 

transition to cloud, dedicated hardware

[Laundar’s Principle: Theoretical limit 
to be reached in 2050, practical sooner]

[Jevon’s Paradox: Historically, gains in 
efficiency have not reduced demand]

[unbounded]

Datacenter capacity increased 
by 6X from 2010-2018

Crypto-mining and ML demand is 
outpacing Moore’s law 

Industry has strong incentive to 
maintain and accelerate growth

[unbounded]

Zero-carbon energy means carbon 
efficiency can be infinite

Industry has helped subsidize 
zero-carbon energy
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• Energy’s carbon efficiency in the US has improved by 45.6% over 2001-2017

Grid’s Carbon Intensity Has Been Decreasing

-30

-20

-10

0

10

2001 2005 2009 2013 2017

World Asia North America Europe

In
te

ns
ity

 C
ha

ng
e 

[%
]

Source: Ember Global Electricity Review (2022) 
Source: BP Statistical Review of World Energy 
Source: Ember European Electricity Review (2022)

Carbon intensity may never truly 
reach 0gCO2eq per kWh. 

It may actually increase in parts of 
the world. 
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Carbon Intensity of Electricity Varies Across Space & Time
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30x
Spatial Variations
Move to the greenest data center 
possible

6x
Temporal Variations
Move to a time slot with the lowest 
carbon emissions

Run when and where low-carbon energy is available.



• Carbon intensity variation: less than 
50g to more than 800g across time 
and geographical regions. 

Clean Energy is Variable and Unreliable 

Source: electricityMap 14

More regions in the world would 
look like Ontario in near future.



The Good News: Computing’s Unique Advantages
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Job 
arrives

run immediately

run later

run slower

run intermittently

run faster

run elsewhere

t = 0 time

Driven by efforts to improve user experience & scale

Driven by efforts to  
reduce costs,  

improve user experience,  
and scale.



How can we leverage carbon intensity variations 
and computing’s flexibility?



Work published at:  
SoCC’21, ASPLOS’23

Enabling Sustainable Clouds: The Case for Virtualizing 
the Energy System
Noman Bashir*, Tian Guo^, Mohammad Hajiesmaili*, David Irwin*, Prashant Shenoy*, Ramesh 
Sitaraman*, Abel Souza*, Adam Wierman^^

Collaborators:  
* University of Massachusetts Amherst

^ Worcester Polytechnic Institute (WPI)

^^ California Institute of Technology (Caltech)
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Ecovisor: A Virtual Energy System for Carbon-Efficient Applications 

Reliability 
Abstraction
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Ecovisor: A Virtual Energy System for Carbon-Efficient Applications 

Reliability 
Abstraction
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Ecovisor: Design and API
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Control Power Supply 
and Demand

Get Energy System 
Information

Asynchronous  
Notifications



Ecovisor: Prototype Implementation
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• Software: REST API

• Hardware: 60 Rock64 nodes

1. Reducing carbon (ML training, MPI)


2. Budgeting carbon (webserver)


3. Leveraging batteries (web server, Spark)


4. Leveraging solar (MPI, straggler)



Ecovisor: Optimizing Carbon/Performance Trade-off
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• Evaluation objectives: Demonstrate carbon savings, show applications should do optimizations.

• Baseline: (WaitAWhile - Middleware ’21), Proposed: Application-specific (Wait&Scale) policy
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PyTorch ML Training

Two follow-up papers, CarbonScaler 
(system) and RORO (theory), on leveraging 

Elasticity will appear at SIGMETRICS’24.

Embarrassingly parallel job.

BLAST



Society’s  
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Computing for Sustainability
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Computing Use Cases

Improving Buildings and Transportation Sectors

• Building as an example of a distributed system

• Sense monitor energy, temperature, occupancy etc.

• Analyze data using computational tools.

• Control lights, HVAC, doors to reduce energy usage.

• Transportation as an example of a distributed system

• Sense?

• Analyze?

• Control?

• Agriculture as an example of computing use case

• Sense?

• Analyze?

• Control?
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Building Monitoring

Wemo smart plug eGauge meter 
with interface

smart meter

• Power metering at different levels

• Outlet-level monitoring

• Meter-level monitoring
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Analyzing the data

• Energy monitors / sensors provide real-time usage data 

• Building monitoring systems (BMS) data from office / commercial buildings


• Modeling, Analytics and Predictions

• Use statistical techniques, machine learning and modeling to gain deep insights

• Which homes have inefficient furnaces, heaters, dryers? 

• Are you wasting energy in your home? 

• Is an office building’s AC schedule aligned with occupancy patterns? 

• When will the aggregate load or transmission load peak?
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Reduce Energy Use —> Learning Thermostat

sensed data

schedule

occupancy

typical day
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Use Low Carbon Energy —> Use Solar Power

• Significant growth in renewable energy adoption

• Roof top wind turbines, solar PV, solar thermal (water heating)


• Highly intermittent

• Impacted by cloud cover, temperature, environmental variables
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Forecasting Solar Energy

• Predictive analytics to model and forecast solar energy generation 

• Use machine learning and NWS weather forecasts to predict solar generation

• Better forecasts of near-term generation; “Sunny load” scheduling
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Use Case - EV Charging

• Solar panels installed in parking lots, rest areas, paid garages 

• Possible use case in offices and car rental services


• Assumptions

• Arrival/departure times for EVs

• Accurate solar predictions


• Intelligent charging

• When to charge?

• Which EV to charge?

• How much to charge?



Climate and Sustainability Implications of Generative AI
Noman Bashir1, Priya L. Donti2,3, James Cuff4, Sydney Sroka1, Marija Ilic2,3, 
Vivienne Sze4,5,6,7, Christina Delimitrou7, Elsa A. Olivetti1,8

1 MIT Climate & Sustainability Consortium (MCSC), 

2 MIT Electrical Engineering and Computer Science (EECS), 

3 MIT Laboratory for Information & Decision Systems (LIDS), 

4 MIT Office of Research Computing & Data (ORCD), 

5 MIT Research Lab of Electronics (RLE), 

6 MIT Microsystems Technology Laboratories (MTL), 

7 MIT Computer Science & Artificial Laboratory (CSAIL). 

8 MIT Materials Science & Engineering (DMSE)
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Unfettered Growth and Its Key Drivers

perceived benefits

ChatGPT 1 
million users 

in 5 days

Only 15% of 
the users are 

from US Interest in 
Gen-AI
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Unfettered Growth and Its Key Drivers

consolidation of AI capabilities lack of regulatory oversight efficiency improvements

perceived benefits

ChatGPT 1 
million users 

in 5 days

Only 5% of 
the users are 

from US Interest in 
Gen-AI



34

Need for Comparative Benefit-cost Evaluation Capability

• Scope

• E.g., a search query. 


• Boundaries

• Geographical: A given region or a data center. 

• Temporal: A given window of time. 

• Conceptual: A search query. 


• Baselines and scenarios

• A standard Google search as a baseline.

• Various GPT models as scenarios.  


• Metrics and data

• Energy usage, GHG emissions, water usage, 

and raw material.
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Illustrative Example: Generative AI-based Search

supply chain
& end of life cloud datacenter

Gen-AI training Gen-AI inference

computing-related impactsimmediate application impactssystem-level impacts

consumer device

search 
engine 

user

socioeconomic 
impacts

GHG

data | R&D

browser

M queries

N queries

1.Baseline: User needs M queries.

2.Gen-AI:    User needs N queries. 

3.Baseline & Gen-AI: Both incur costs during data processing and R&D phase. 

4.Gen-AI:, Model training is an additional cost. 

5.Baseline & Gen-AI: Both incur per-query costs, which may differ. 

6.Baseline & Gen-AI: Both incur costs during supply chain and end-of-life phases.

7.Baseline & Gen-AI: User’s actions have system-level socioeconomic impacts.

The immediate 
application impacts include the 
reduced time spent on search 

and quality of response. 

The computing-related costs 
include raw material usage, 
energy consumption, waste 
generation, and water use. 

The system-level impacts 
include broader socioeconomic 
impacts computing as well as 

user using the Gen-AI for search.
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Stakeholder Engagement for Responsible Development in Gen-AI

policymakers 
and legal 
experts

AI 
practitioners 

and 
engineers

energy and 
supply chain 

experts
economists

social 
scientists civil society end users
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Leveraging Benefit-cost Evaluation Framework

• Monitoring the evolution of Gen-AI as a sector


• Identifying opportunities to improve benefit-cost ratio

• Facilitating eco-economic decoupling and constrained growth
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• Sustainable Computing

• Demand for computing is growing

• Need to serve the demand sustainably

• Energy efficiency gains reducing

• Computing has unique advantages

• Try to optimize computing’s carbon efficiency

• Reduce operational as well as emobodied carbon


• Computing for Sustainability 
• Leverage computing to reduce energy consumption

• Leverage computing to enhance use of low carbon energy

Summary


