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Computing’s Demand is Growing Exponentially
e Society continues to find useful applications
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Implications of Increasing Computing Demand
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How is Computing Demand Served?

Data Center

11.5x the size of a football field.

Thousands of servers and data storage,
e.g., Google Dalles data center houses
~100k servers and consumes 100MW of
power (enough for a small city)

Edge Data Center

Edge Site

10s-100s of servers and data storage,
1,000 sqft to 50,000 sqft
a few kW to a few MW

Mobile Device

Mobile devices and
small storage
hand-held etc.

a few watts

note: figures are not drawn to scale.



What Contributes to Data Center’s Cost, Energy, Carbon Footprint?

Cost

» Servers: Cost a lot and are replaced every 3-5 years.
e Building: Capital investment, depends on location.
* Energy: Major cost of datacenter, depends on location.

serverfjserverijjserver
server||server||server Energy

 Computing: Become more energy efficient over time.
Serverj|serverjjserver * Cooling: Wasted energy, significantly reduced over years.
server | server compute

cooling Carbon

 Embodied: Carbon emissions from manufacturing/building.

e Operational: Emissions from energy use for compute and cooling.



How to Serve Computing’s Demand in a Sustainable Manner?

Sustainable —> least carbon intensive way.

o

cooling

Carbon

 Embodied: Carbon emissions from manufacturing/building.

* Operational: Emissions from energy use for compute and cooling.
* From the energy used to run the servers.
* From the energy used to cool the servers.

| Reduce Embodied Emissions and Reduce |
' Operational Emissions ';_



_ Cycles per Unit Work x Total Units of Work
Carbon Footprint =

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

_ 10 cycles per inference request x 100 inference requests
Carbon Footprint =

5 cycles per kWh x 1 kWh per gCO2eq

Carbon Footprint = 200 gCO2eq




History: Driving Factors Behind Innovations in Data Centers

Cost of Energy Has Been Driving Innovation Shift from Traditional Data Centers to Cloud

e Assume 100,000 servers

120
 Monthly cost of 1 server

.
* 500W server 90 % 2
 Cost = (Watts X Hours / 1000) * cost per kWh 60 % 'é
 Always-on server monthly cost = $50 E cgb
Q
* Monthly cost of 100k servers = $5M I I 30 2, 2
» What about the cost of cooling? 0
* Use Power Usage Effectiveness (PUE) 2015 2017 2019 2021*
e PUE = 2 —> double the cost B Traditional M Cloud (non-hyperscale) M Hyperscale
 PUE =1.2 —> 10% extra on $5M ($6M) PUE: ~1.57 PUE: ~1.1

9 Source: Global data centre energy demand by data centre type, 2015-2021 - IEA



Energy Efficiency Gains Moving Forward

 Most optimistic estimates suggest 6% increase from 2010-2018
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Algorithmic Efficiency can be | Datacenter capacity increased
further improved, but has limits § by 6X from 2010-2018

Industry h t | tive t unbotinded] C INi dMLd d |
ndustry has strong incentive to Ibounded] - Crypto-mining an emand is

improve the algorithmic efficiency A - outpacing Moore’s law

E 2

- Industry has strong incentive to

Recent focus on ML training !
. maintain and accelerate growth

and Crypto-mining

_ Cycles per Unit Work x Total Units of Work
Carbon Footprint =

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

[Koomey’s Law: Energy efficiency }
doubles every 1.5-2.6 years] &
transition to cloud, dedicated hardware §

- Zero-carbon energy means carbon
_ efficiency can be infinite

v

[Laundar’s Principle: Theoretical limit
[bounded]

to be reached in 2050, practical sooner] §

¢

<4

- Industry has helped subsidize

[unbounded] ¢
. zero-carbon energy

[Jevon’s Paradox: Historically, gains in
efficiency have not reduced demand] §

"
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Grid’s Carbon Intensity Has Been Decreasing

 Energy’s carbon efficiency in the US has improved by 45.6% over 2001-2017

# World -A- Asia 4 North America @ Europe
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Source: Ember Global Electricity Review (2022)
Source: BP Statistical Review of World Energy

Source: Ember European Electricity Review (2022) 15
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Carbon Intensity of Electricity Varies Across Space & Time
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Clean Energy is Variable and Unreliable

Carbon intensity variation: less than
50g to more than 800g across time
and geographical regions.

Source: electricityMap
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The Good News: Computing’s Unique Advantages

Driven by efforts to improve user experience & scale

Job

arrives

‘ - -

L,y— run immediately
- run elsewhere
_—

— run later

—_—

- run slower
—_

_—

. - I . I - run intermittently

e
t=0 time

15

Driven by efforts to
reduce costs,
Improve user experience,
and scale.



How can we leverage carbon intensity variations
and computing’s flexibility?



Enabling Sustainable Clouds: The Case for Virtualizing
the Energy System

Noman Bashir*, Tian Guo”, Mohammad Hajiesmaili*, David lrwin*, Prashant Shenoy”, Ramesh
Sitaraman®, Abel Souza*, Adam Wierman/A

Work published at: Collaborators:
SoCC’21, ASPLOS’23 * University of Massachusetts Amherst
N Worcester Polytechnic Institute (WPI)
AN California Institute of Technology (Caltech)



Ecovisor: A Virtual Energy System for Carbon-Efficient Applications

Reliability |
Abstractionj

Energy

18
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Ecovisor: A Virtual Energy System for Carbon-Efficient Applications

Reliability {
Abstraction

Grid’s Underlying Reality
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Ecovisor: Design and API

‘ | - - — - - '” ‘ Function Name Type Input Return Value Description

3 CO nta | ne rl Zed Ap p CO nta I n e rl Zed Ap p » [| set_container_powercap () Setter ContainerID, kW N/A Set a container’s power cap

! set_battery_charge_rate () Setter kW N/A Set battery charge rate until full

,‘ — | rf AP set_battery_max_discharge () Setter kW N/A Set max battery discharge rate

' E{S App nterface E‘fa App Interface get_solar_power () Getter N/A kW Get virtual solar power output

4 Power/Carbon ‘ Power/Carbon e v Resource Control { get_grid_power () Getter N/A kW Get virtual grid power usage

: Monitoring : Control Ol u get_grid_carbon () Getter N/A g-COy/kW Get current grid carbon intensity

’ ° % get_battery_discharge_rate () Getter N/A kW Get current rate of battery discharge || €¢—
£ ;;F:I :;l ./ 4 get_battery_charge_level () Getter N/A kWh Get energy stored in virtual battery

, — é\n‘ ECO I nte rface = CO ntrOI I nte rfa ce get_container_powercap () Getter ContainerID kW Get a container’s power cap

3 —cO . O O % get_container_power () Getter ContainerID kW Get a container’s power usage

L’ m - o i

¥ o p ’ N/ . \ 3 -.“ tick () Notification N/A N/A Invoked by ecovisor every At
Virtualized Virtualized E 1

$ @) Energy Res. Energy Res. < $ 4

1 S, :‘E % ,‘g % s { Control Power Supply Asynchronous Get Energy System
1 \ 7 Lo 77 Lo < and Demand Notifications Information
o \ J \ J 72 8

{ = =

{ ,

Software Defined Control

f 1 T

' # 000

] Y & & Server ;
I — Cluster
2 |_Energy Storage or :
; Renewables Data

Energy System Computing System
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Ecovisor: Prototype Implementation

e Software: REST API
e Hardware: 60 Rockb4 nodes

— | ST Uk o 1. Reducing carbon (ML training, MPI)
Battery + A\ e "
Larcmrgemmuer gEEEE ‘ E | | ah SR 2. Budgeting carbon (webserver)

ol el o I - Y

3. Leveraging batteries (web server, Spark)

4. Leveraging solar (MPI, straggler)

21



Ecovisor: Optimizing Carbon/Performance Trade-off

* Evaluation objectives: Demonstrate carbon savings, show applications should do optimizations.
* Baseline: (WaitAWhile - Middleware '21), Proposed: Application-specific (Wait&Scale) policy
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Computing for Sustainability

( Societal )
\ Applications /

Infrastructure’s
Energy Demand

23



Computing Use Cases

Improving Buildings and Transportation Sectors

CH
Dlls s

* Building as an example of a distributed system
* Sense monitor energy, temperature, occupancy etc.
* Analyze data using computational tools.
e Control lights, HVAC, doors to reduce energy usage.

* Transportation as an example of a distributed system
* Sense?
* Analyze?
e Control?

* Agriculture as an example of computing use case

e Sense?
AR A | o
__________ 4 | e Analyze*
‘IW.A .'W/L., 4\-. y
 Control?

24



Building Monitoring

 Power metering at different levels

e Qutlet-level monitoring
 Meter-level monitoring

~ AnRRAns AN g

Wemo smart plug eGauge meter smart meter
with interface

25



Analyzing the data

* Energy monitors / sensors provide real-time usage data

* Building monitoring systems (BMS) data from office / commercial buildings

 Modeling, Analytics and Predictions

* Use statistical techniques, machine learning and modeling to gain deep insights
 Which homes have inefficient furnaces, heaters, dryers?

* Are you wasting energy in your home?

* |s an office building’s AC schedule aligned with occupancy patterns?

 When will the aggregate load or transmission load peak?

26



Reduce Energy Use —> Learning Thermostat

MONDAY TUESDAY SUNDAY

Mo

sensed data

occuparncy v

HOME AWAY /4 HOME Mon HOME AWAY HOME

\ \/ Tue HOME AWAY HOME

. | Wed HOME AWAY HOME

/ Thu HOME AWAY HOME
[\' Fri HOME AWAY HOME

\ Sat HOME
QUM /\/_/\/\/\ A Sun HOME AWAY HOME
12AM 2 4 6 8 10 12PM 2 4 6 8 10 12
typical day schedule

27



Use Low Carbon Energy —> Use Solar Power

» Significant growth in renewable energy adoption

 Roof top wind turbines, solar PV, solar thermal (water heating)

e Highly intermittent

 |mpacted by cloud cover, temperature, environmental variables

-
o

Sljnny Variable

BN

Power (kW)
Qo

Overcast

Mo,

EDD O

\

N

o
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Forecasting Solar Energy

* Predictive analytics to model and forecast solar energy generation

 Use machine learning and NWS weather forecasts to predict solar generation

14 Solar Data ---—»--
Model ——

12 + Model(temp) =
10 f ° °

Power (kW)
N EAN (@) (0]

........

- a s sassssa e

Winter Spring Summer Fall

o

Time

» Better forecasts of near-term generation; “Sunny load” scheduling
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Use Case - EV Charging

* Solar panels installed in parking lots, rest areas, paid garages

* Possible use case in offices and car rental services

 Assumptions

* Arrival/departure times for EVs
 Accurate solar predictions

* |ntelligent charging

 When to charge?
 Which EV to charge?
 How much to charge?

30



Climate and Sustainability Implications of Generative Al

Noman Bashir1, Priya L. Donti23, James Cuff4, Sydney Srokal, Marija llic23,
Vivienne Sze456,7 Christina Delimitrou?, Elsa A. Olivettil.8

1 MIT Climate & Sustainability Consortium (MCSC), 5 MIT Research Lab of Electronics (RLE),

2 MIT Electrical Engineering and Computer Science (EECS), 6 MIT Microsystems Technology Laboratories (MTL),

3 MIT Laboratory for Information & Decision Systems (LIDS), T"MIT Computer Science & Artificial Laboratory (CSAIL).
4 MIT Office of Research Computing & Data (ORCD), 8 MIT Materials Science & Engineering (DMSE)
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Unfettered Growth and Its Key Drivers

™

Interest In
Gen-Al

ChatGPT 1
million users
In 5 days

Only 15% of

the users are
from US

perceived benefits
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Unfettered Growth and Its Key Drivers

ChatGPT 1
million users
In 5 days

Only 5% of

the users are |
from US Interest In

Gen-Al

Absorb smaller

consolidation of Al capabilities lack of regulatory oversight

log10 - FLOP/s per dollar

perceived benefits

empirical GPU FLOP/s per dollar

14

13 A

12 A

Our data (2x every 2.46 years) ,
Moore's law slope (2x every 2.00 years) ,
Huang's law slope (2x every 1.08 years) .
Bio anchors report slope (2x every 2.50 years) ,
empirical CPU slope (2x every 2.32 years) ,
Top FLOPs/dollar GPUs (2x every 2.95 years) .~

ML GPUs (2x every 2.07 years) _-

o 0>

1’3’\' QC)'Q’L Q%:g\ QX’OX Q‘)’(ﬂ' o9

efficiency improvements

0\’0\'

N RIS S AN OSBRI PN 12 203%
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Need for Comparative Benefit-cost Evaluation Capability

e Scope

 E.g., a search query.

e Boundaries

 (Geographical: A given region or a data center.
 Jemporal: A given window of time.

 (Conceptual: A search query.

e Baselines and scenarios

A standard Google search as a baseline.

e Various GPT models as scenarios.

e Metrics and data

* Energy usage, GHG emissions, water usage,
and raw material.
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lllustrative Example: Generative Al-based Search

| socioeconomic
1@ impacts

esupply chain search
& end of life cnone

1.Baseline: User needs M queries.

2.Gen-Al: User needs N queries.

3.Baseline & Gen-Al: Both incur costs during data processing and R&D phase.
4.Gen-Al:, Model training is an additional cost.

5.Baseline & Gen-Al: Both incur per-query costs, which may differ.

6.Baseline & Gen-Al: Both incur costs during supply chain and end-of-life phases.
/.Baseline & Gen-Al: User’s actions have system-level socioeconomic impacts.

The computing-related costs
iInclude raw material usage,
energy consumption, waste
generation, and water use.

The immediate
application impacts include the
reduced time spent on search
and quality of response.

The system-level impacts
iInclude broader socioeconomic
iImpacts computing as well as
user using the Gen-Al for search.
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Stakeholder Engagement for Responsible Development in Gen-Al

Al

policymakers energy and

and legal practitioners supply chain
experts and experts
engineers

social

scientists
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Leveraging Benefit-cost Evaluation Framework

* Monitoring the evolution of Gen-Al as a sector

* |dentifying opportunities to improve benefit-cost ratio

* Facilitating eco-economic decoupling and constrained growth



Summary

» Sustainable Computing
 Demand for computing is growing
* Need to serve the demand sustainably
* Energy efficiency gains reducing
« Computing has unigue advantages
* Try to optimize computing’s carbon efficiency

 Reduce operational as well as emobodied carbon

 Computing for Sustainability
* Leverage computing to reduce energy consumption
* |Leverage computing to enhance use of low carbon energy
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